2023年成考高起點每日一練《數(shù)學(理)》8月27日專為備考2023年數(shù)學(理)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。
單選題
1、設(shè)雙曲線的漸近線的斜率為k,則|k|=() ?
- A:
- B:
- C:
- D:
答 案:D
解 析:雙曲線漸近線的斜率為k故本題中k
2、從橢圓與x軸額右交點看短軸兩端點的視角為60°的橢圓的離心率() ?
- A:
- B:
- C:1
- D:
答 案:A
解 析:求橢圓的離心率,先求出a,c.(如圖) ,由橢圓定義知
3、在△ABC中,若lgsinA-lgsinB-lgcos=lg2,則△ABC是()
- A:以A為直角的三角形
- B:b=c的等腰三角形
- C:等邊三角形
- D:鈍角三角形
答 案:B
解 析:判斷三角形的形狀,條件是用一個對數(shù)等式給出先將對數(shù)式利用對數(shù)的運算法則整理。 ∵lgsinA-lgsinB-lgcos=lg2,由對數(shù)運算法則可得,左 兩個對數(shù)底數(shù)相等則真數(shù)相等:即2sinBcosC=sinA 在△ABC中,∵A+B+C=180°,∴A=180°-(B+C), 故為等腰三角形
4、如果不共線的向量a和b有相等的長度,則(a+b)(a-b)=() ?
- A:0
- B:1
- C:-1
- D:2
答 案:A
解 析:(a+b)(a-b)=
主觀題
1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點((1,f(1))處的切線方程;
(II)求f(x)的極值.
答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當時,f'(x)
2、已知數(shù)列的前n項和 求證:是等差數(shù)列,并求公差和首項。 ?
答 案: ?
3、在正四棱柱ABCD-A'B'C'D'中, (Ⅰ)寫出向量和關(guān)于基底{a,b,c}的分解式; (Ⅱ)求證: (Ⅲ)求證: ?
答 案:(Ⅰ)由題意知(如圖所示) ?
4、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得所以AB =4.因此所以
填空題
1、橢圓的中心在原點,一個頂點和一個焦點分別是直線x+3y-6與兩坐標軸的交點,則此橢圓的標準方程為() ?
答 案:
解 析:原直線方程可化為交點(6,0),(0,2). 當點(6,0)是橢圓一個焦點,點(0,2) 是橢圓一個頂點時,c=6,b=2,當點(0,2) 是橢圓一個焦點,(6,0) 是橢圓一個頂點時,c=2,b-6,
2、設(shè)離散型隨機變量的分布列如下表,那么的期望等于() ?
答 案:5.48
解 析:=6×0.7+5.4×0.1+5×0.1+4×0.06+0×0.04=5.48