2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》8月29日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績。
單選題
1、() ?
- A:8
- B:14
- C:12
- D:10
答 案:B
解 析:
2、某學(xué)校為新生開設(shè)了4門選修課程,規(guī)定每位新生至少要選其中3門,則一位新生不同的選課方案共有 ( )
- A:7種
- B:4種
- C:5種
- D:6種
答 案:C
3、設(shè)函數(shù)f(x十1)=2x+2,則f(x)=()
- A:2x-1
- B:2x
- C:2x+1
- D:2x+2
答 案:B
解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t換成x,因此f(x)=2x.
4、已知雙曲線上一點(diǎn)到兩焦點(diǎn)(-5,0),(5,0)距離之差的絕對(duì)值等于6,則雙曲線方程為() ?
- A:
- B:
- C:
- D:
答 案:A
解 析:由已知條件知雙曲線焦點(diǎn)在x軸上屬于第一類標(biāo)準(zhǔn)式,又知c=5,2a=6, ∴a=3,∴所求雙曲線的方程為 ?
主觀題
1、已知直線l的斜率為1,l過拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由得設(shè)A(x1,y1).B(x2,y2),則因此
2、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
3、在△ABC中,已知三邊 a、b、c 成等差數(shù)列,且最大角∠A是最小角的2倍, a: b :c. ?
答 案:
4、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求通項(xiàng)的表達(dá)式 (Ⅱ)求的值 ?
答 案:(Ⅰ)當(dāng)n=1時(shí),由得 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項(xiàng)為公差為d=-4的等差數(shù)列,所以是首項(xiàng)為公差為d=-8,項(xiàng)數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項(xiàng)和公式得: ?
填空題
1、函數(shù)y=的定義域是()
答 案:[1,+∞)
解 析:要是函數(shù)y=有意義,需使 所以函數(shù)的定義域?yàn)閧x|x≥1}=[1,+∞) ?
2、函數(shù)的圖像與坐軸的交點(diǎn)共有()個(gè) ?
答 案:2
解 析:當(dāng)x=0,故函數(shù)與y軸交于(0,-1)點(diǎn);令y=0,則有故函數(shù)與工軸交于(1,0)點(diǎn),因此函數(shù)與坐標(biāo)軸的交點(diǎn)共有2個(gè)