133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點(diǎn) → 2023年08月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023年08月29日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023/08/29 作者:匿名 來源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》8月29日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績。

單選題

1、() ?

  • A:8
  • B:14
  • C:12
  • D:10

答 案:B

解 析:

2、某學(xué)校為新生開設(shè)了4門選修課程,規(guī)定每位新生至少要選其中3門,則一位新生不同的選課方案共有 ( )

  • A:7種
  • B:4種
  • C:5種
  • D:6種

答 案:C

3、設(shè)函數(shù)f(x十1)=2x+2,則f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t換成x,因此f(x)=2x.

4、已知雙曲線上一點(diǎn)到兩焦點(diǎn)(-5,0),(5,0)距離之差的絕對(duì)值等于6,則雙曲線方程為() ?

  • A:
  • B:
  • C:
  • D:

答 案:A

解 析:由已知條件知雙曲線焦點(diǎn)在x軸上屬于第一類標(biāo)準(zhǔn)式,又知c=5,2a=6, ∴a=3,∴所求雙曲線的方程為 ?

主觀題

1、已知直線l的斜率為1,l過拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.

答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由設(shè)A(x1,y1).B(x2,y2),則因此

2、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.

答 案:由已知得解得

3、在△ABC中,已知三邊 a、b、c 成等差數(shù)列,且最大角∠A是最小角的2倍, a: b :c. ?

答 案:

4、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求通項(xiàng)的表達(dá)式 (Ⅱ)求的值 ?

答 案:(Ⅰ)當(dāng)n=1時(shí),由 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項(xiàng)為公差為d=-4的等差數(shù)列,所以是首項(xiàng)為公差為d=-8,項(xiàng)數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項(xiàng)和公式得: ?

填空題

1、函數(shù)y=的定義域是()

答 案:[1,+∞)

解 析:要是函數(shù)y=有意義,需使 所以函數(shù)的定義域?yàn)閧x|x≥1}=[1,+∞) ?

2、函數(shù)的圖像與坐軸的交點(diǎn)共有()個(gè) ?

答 案:2

解 析:當(dāng)x=0,故函數(shù)與y軸交于(0,-1)點(diǎn);令y=0,則有故函數(shù)與工軸交于(1,0)點(diǎn),因此函數(shù)與坐標(biāo)軸的交點(diǎn)共有2個(gè)

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過審核才能顯示

精彩評(píng)論

最新評(píng)論
?