2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》10月13日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、函數(shù)y=2sinxcosx的最小正周期是() ?
- A:
- B:
- C:
- D:
答 案:D
解 析:y=2sinxcosx=sin2x,故其最小正周期
2、函數(shù)的圖像與直線y=4的交點(diǎn)坐標(biāo)為()
- A:(0,4)
- B:(4,64)
- C:(1,4)
- D:(4,16)
答 案:C
解 析:令y=4x=4,解得x=1,故所求交點(diǎn)為(1,4).
3、設(shè)集合M={x||x-2||<2},N={0,1,2,3,4},則M∩N=()
- A:{2}
- B:{0,1,2}
- C:{1,2,3}
- D:{0,1,2,3,4}
答 案:C
解 析:解得M={x||x-2||<2}={x|-2<x-2<2}={x|0<x<4},故M∩N={1,2,3}.
4、已知sinx,則x所在象限是() ?
- A:第一象限
- B:第二象限
- C:第三象限
- D:第四象限
答 案:C
解 析:=sinx|sinx|+cosx|cosx|,當(dāng)sinx、cosx均為負(fù)時(shí),有 故x在第三象限 ?
主觀題
1、已知三角形的一個(gè)內(nèi)角是,面積是周長(zhǎng)是20,求各邊的長(zhǎng). ?
答 案:設(shè)三角形三邊分別為a,b,c,∠A=60°, ?
2、設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率已知點(diǎn)P到圓上的點(diǎn)的最遠(yuǎn)距離是求橢圓的方程 ?
答 案:由題意,設(shè)橢圓方程為 由 設(shè)P點(diǎn)到橢圓上任一點(diǎn)的距離為 d, 則在y=-b時(shí),最大,即d也最大。 ?
3、每畝地種果樹20棵時(shí),每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?
答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當(dāng)x=5時(shí),y有最大值,所以每畝地最多種25棵
4、設(shè)函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.
答 案:(I)因?yàn)?img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×22-4=8.(II)因?yàn)閤<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為
填空題
1、設(shè)則
答 案:-1
解 析: ?
2、()
答 案:3
解 析: